Skip to the content.

执行策略(execution policy)

std::vector<int> v;
std::sort(std::execution::par, v.begin(), v.end());
std::execution::sequenced_policy;
std::execution::parallel_policy;
std::execution::parallel_unsequenced_policy;
std::execution::unsequenced_policy;  // C++20
std::execution::seq;
std::execution::par;
std::execution::par_unseq;
std::execution::unseq;  // C++20
std::for_each(v.begin(), v.end(), [](auto x) { throw my_exception(); });
std::for_each(std::execution::seq, v.begin(), v.end(),
              [](auto x) { throw my_exception(); });

std::execution::sequenced_policy

std::vector<int> v(1000);
int n = 0;
// 把 1-1000 存入容器,存入顺序可能是顺序也可能是乱序
std::for_each(std::execution::seq, v.begin(), v.end(),
              [&](int& x) { x = ++n; });

std::execution::parallel_policy

std::for_each(std::execution::par, v.begin(), v.end(), [](auto& x) { ++x; });
std::vector<int> v(1000);
int n = 0;
std::for_each(std::execution::par, v.begin(), v.end(), [&](int& x) {
  x = ++n;
});  // 如果多个线程执行 lambda 就会对 n 产生数据竞争

std::execution::parallel_unsequenced_policy

标准库并行算法

std::accumulate(v.begin(), v.end(), 0);
std::reduce(std::execution::par, v.begin(), v.end());
template <class RandomIt>
void sort(RandomIt first, RandomIt last);

template <class RandomIt, class Compare>
void sort(RandomIt first, RandomIt last, Compare comp);

// 并行版对应有两个重载
template <class ExecutionPolicy, class RandomIt>
void sort(ExecutionPolicy&& policy, RandomIt first, RandomIt last);

template <class ExecutionPolicy, class RandomIt, class Compare>
void sort(ExecutionPolicy&& policy, RandomIt first, RandomIt last,
          Compare comp);
template <class InputIt, class OutputIt>
OutputIt copy(InputIt first, InputIt last, OutputIt d_first);

template <class ExecutionPolicy, class ForwardIt1, class ForwardIt2>
ForwardIt2 copy(ExecutionPolicy&& policy, ForwardIt1 first, ForwardIt1 last,
                ForwardIt2 d_first);
#include <algorithm>
#include <mutex>
#include <vector>

class A {
 public:
  int get() const {
    std::lock_guard<std::mutex> l(m_);
    return n_;
  }

  void inc() {
    std::lock_guard<std::mutex> l(m_);
    ++n_;
  }

 private:
  mutable std::mutex m_;
  int n_ = 0;
};

void f(std::vector<A>& v) {
  std::for_each(std::execution::par, v.begin(), v.end(), [](A& x) { x.inc(); });
}
#include <algorithm>
#include <mutex>
#include <vector>

class A {
 public:
  int get() const { return n_; }
  void inc() { ++n_; }

 private:
  int n_ = 0;
};

class B {
 public:
  void lock() { m_.lock(); }
  void unlock() { m_.unlock(); }
  std::vector<A>& get() { return v_; }

 private:
  std::mutex m_;
  std::vector<A> v_;
};

void f(B& x) {
  std::lock_guard<std::mutex> l(x);
  auto& v = x.get();
  std::for_each(std::execution::par_unseq, v.begin(), v.end(),
                [](A& x) { x.inc(); });
}
struct Log {
  std::string page;
  time_t visit_time;
  // any other fields
};

extern Log parse(const std::string& line);

using Map = std::unordered_map<std::string, unsigned long long>;

Map f(const std::vector<std::string>& v) {
  struct Combine {
    // log、Map 两个参数有四种组合,所以需要四个重载
    Map operator()(Map lhs, Map rhs) const {
      if (lhs.size() < rhs.size()) {
        std::swap(lhs, rhs);
      }
      for (const auto& x : rhs) {
        lhs[x.first] += x.second;
      }
      return lhs;
    }

    Map operator()(Log l, Map m) const {
      ++m[l.page];
      return m;
    }

    Map operator()(Map m, Log l) const {
      ++m[l.page];
      return m;
    }

    Map operator()(Log lhs, Log rhs) const {
      Map m;
      ++m[lhs.page];
      ++m[rhs.page];
      return m;
    }
  };

  return std::transform_reduce(std::execution::par, v.begin(), v.end(),
                               Map{},      // 初始值,一个空的 map
                               Combine{},  // 结合两个元素的二元操作
                               parse);  // 对每个元素执行的一元操作
}